Let f, g and h be functions from R to R. Show that

(f + g)oh = foh + goh


(f . g)oh = (foh) . (goh)

(i) (f + g)oh = foh + goh

Let us consider ((f + g)oh)(x) = (f + g)(h(x))


= f(h(x)) + g(h(x))


= (foh)(x) + (goh)(x)


= {(fog) + (goh)}(x)


Then, ((f + g)oh)(x) = {(foh) +(goh)}(x) x ϵ R


Therefore, (f + g)oh = foh + goh.


(ii) (f.g)oh = (foh).(goh)


Let us consider ((f.g)oh)(x) = (f.g)(h(x))


= f(h(x)).g(h(x))


= f (h(x)).g(h(x))


= (fog)(x).(goh)(x)


= {(fog).(goh)}(x)


Then, ((f.g)oh)(x) = {(fog).(goh)}(x) x ϵ R


Therefore, (f.g)oh = (fog).(goh)


2