Find all the points of discontinuity of f defined by f (x) = | x| – | x + 1|.

It is given that f(x) = |x| - |x + 1|

The given function f is defined for real number and f can be written as the composition of two functions, as


f = goh, where g(x) = |x| and h(x) = |x + 1|


Then, f = g - h


First we have to prove that g(x) = |x| and h(x) = |x + 1| are continuous functions.


g(x) = |x| can be written as



Now, g is defined for all real number.


Let k be a real number.


Case I: If k < 0,


Then g(k) = -k


And


Thus,


Therefore, g is continuous at all points x, i.e., x > 0


Case II: If k > 0,


Then g(k) = k and



Thus,


Therefore, g is continuous at all points x, i.e., x < 0.


Case III: If k = 0,


Then, g(k) = g(0) = 0





Therefore, g is continuous at x = 0


From the above 3 cases, we get that g is continuous at all points.


g(x) = |x + 1| can be written as



Now, h is defined for all real number.


Let k be a real number.


Case I: If k < -1,


Then h(k) = -(k + 1)


And


Thus,


Therefore, h is continuous at all points x, i.e., x < -1


Case II: If k > -1,


Then h(k) = k + 1 and



Thus,


Therefore, h is continuous at all points x, i.e., x > -1.


Case III: If k = -1,


Then, h(k) = h(-1) = -1 + 1 = 0





Therefore, g is continuous at x = -1


From the above 3 cases, we get that h is continuous at all points.


Hence, g and h are continuous function.


Therefore, f = g – h is also a continuous function.


34