Write Minors and Cofactors of the elements of following determinants:


Minor of an element aij = Mij �


a11 = 1, Minor of element a11 = M11 = = (5 × 2) – ((-1) × 1) = 10 + 1 = 11


Here removing 1st row and 1st column from the determinant we are left out with the determinant. Solving this we get M11 = 11


Similarly, finding other Minors of the determinant


a12 = 0, Minor of element a12 = M12 = = (3 × 2) – ((-1) × 0) = (6 - 0) = 6


a13 = 4, Minor of element a13 = M13 = = (3 × 1) – (5 × 0) = 3 - 0 = 3


a21 = 3, Minor of element a21 = M21 = = (0 × 2) – (4 × 1) = 0 – 4 = -4


a22 = 5, Minor of element a22 = M22 = = (1 × 2) – (4 × 0) = 2 – 0 = 2


a23 = -1, Minor of element a23 = M23 = = (1 × 1) – (0 × 0) = 1


a31 = 0, Minor of element a31 = M31 = = (0 × (-1)) – (4 × 5) = 0 – 20 = -20


a32 = 1, Minor of element a32 = M32 = = (1 × (-1)) – (4 × 3) = -1 – 12 = -13


a33 = 2, Minor of element a33 = M33 = = (1 × 5) – (0 × 3) = (5 – 0) = 5


Cofactor of an element aij, Aij = (-1)i+j × Mij


A11 = (-1)1+1× M11 = 1 × 11 = 11


A12 = (-1)1+2× M12 = (-1) × 6 = -6


A13 = (-1)1+3× M13 = 1 × 3 = 3


A21 = (-1)2+1× M21 = (-1) × (-4) = 4


A22 = (-1)2+2 × M22 = 1 × 2 = 2


A23 = (-1)2+3 × M23 = (-1) × 1 = -1


A31 = (-1)3+1 × M31 = 1 × (-20) = -20


A32 = (-1)3+2 × M32 = (-1) × (-13) = 13


A33 = (-1)3+3 × M33 = 1 × 5 = 5


2