Differentiate w.r.t. x the function
, for x > 3
Let y =
And let = u & = v
∴ y = u + v
Differentiating both sides w.r.t. x we get
………..(I)
Now,
Taking logarithm both sides
⇒
Differentiating w.r.t. x, we get
⇒
⇒ ……………(II)
Also,
Taking logarithm both sides
⇒
Differentiating both sides w.r.t. x
⇒
⇒
⇒ ……………………….(II)
Substituting (II) and (III) in (I)
∴