If for , – 1 < x < 1, prove that
Given,
Now, squaring both sides, we get
⇒
⇒
⇒ x2 + x2y = y2 + y2x
⇒ x2 – y2 = xy2 – x2y
⇒ (x + y)(x – y) = xy (y – x)
⇒ x + y = –xy
⇒ y + xy = –x
⇒ y (1 + x) = –x
⇒
Differentiating both sides with respect to x, we get
Using Quotient Rule
∴
Hence, Proved