If f(x) = 3x2 + 15x + 5, then the approximate value of f (3.02) is
Let x = 3 and Δx = 0.02. Then, we get,
f(3.02) = f(x + Δx) = 3(x +Δx)2 + 15( x + Δx) + 5
Now, Δy = f (x + Δx) – f(x)
⇒ f (x + Δx) = f(x) + Δy
≈ f(x) + f’(x).Δx (as dx = Δx)
⇒ f(3.02) ≈ (3x2 + 15x + 5) + (6x + 15) Δx
= [3(3)2 + 15(3) + 5] +[6(3) + 15] (0.02)
= (27 + 45 + 5) + (18 + 15)(0.02)
= 77 + 0.66
= 77.66
Therefore, the approximate value of f (3.02) is 77.66.