Prove that the determinant is independent of θ.
Let Δ =
Expanding the above determinant along R1 i.e. Row 1
Δ = x (-x2 – 1) – sinθ (-x × sinθ – cosθ × 1) + cosθ (-sinθ × 1 + x cosθ)
Δ = -x3 – x + xsin2θ + sinθ × cos θ – sinθ × cosθ + x cos2θ
Δ = -x3 – x + x (sin2θ + cos2θ)
Since, sin2θ + cos2θ = 1
∴ Δ = -x3 – x + x
Hence Δ is independent of θ.