## Book: RS Aggarwal - Mathematics

#### Subject: Maths - Class 10th

##### Q. No. 44 of Exercise 10A

Listen NCERT Audio Books - Kitabein Ab Bolengi

44
##### Solve each of the following quadratic equations:x2 - (2b - 1)x + (b2 - b - 20) = 0

x2 - (2b - 1)x + (b2 - b - 20) = 0

Using the splitting middle term - the middle term of the general equation is divided in two such values that:

Product = a.c

For the given equation a = 1; b = - (2b - 1); c = b2 - b - 20

= 1(b2 - b - 20)

= (b2 - b - 20)

And either of their sum or difference = b

= - (2b - 1)

Thus the two terms are - (b - 5) and - (b + 4)

Sum = - (b - 5) - (b + 4)

= - b + 5 - b - 4

= - 2b + 1

= - (2b - 1)

Product = - (b - 5) - (b + 4)

= (b - 5) (b + 4)

= b2 - b - 20

x2 - (2b - 1)x + (b2 - b - 20) = 0

x2 - (b - 5)x - (b + 4)x + (b - 5)(b + 4) = 0

x[x - (b - 5)] - (b + 4)[x - (b - 5)] = 0

[x - (b - 5)] [x - (b + 4)] = 0

[x - (b - 5)] = 0 or [x - (b + 4)] = 0

x = (b - 5) or x = (b + 4)

Hence the roots of equation are (b - 5) or (b + 4)

1
1
1
1
1
1
1
1
1
1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73