The sides of certain triangles are given below. Determine which of them are right triangles.

(i) 9 cm, 16 cm, 18 cm


(ii) 7 cm, 27 cm, 25 cm


(iii) 1.4 cm, 4.8 cm, 5 cm


(iv) 1.6 cm, 3.8 cm, 4 cm


(v) (a - 1) cm, 2 √a cm, (a + 1) cm

In a right angled triangle


(Hypotenuse) 2 = (Base)2 + (Height)2


where hypotenuse is the longest side.


(i) L.H.S. = (Hypotenuse)2 = (18)2 = 324


R.H.S. = (Base)2 + (Height)2 = (9)2 + (16)2 = 81 + 256 = 337


L.H.S. ≠ R.H.S.


It is not a right triangle.


(ii) L.H.S. = (Hypotenuse)2 = (27)2 = 729


R.H.S. = (Base)2 + (Height)2 = (7)2 + (25) 2 = 49 + 625 = 674


L.H.S. ≠ R.H.S.


It is not a right triangle.


(iii) L.H.S. = (Hypotenuse)2 = (5)2 = 25


R.H.S. = (Base)2 + (Height)2 = (1.4)2 + (4.8) 2 = 1.96 + 23.04 = 25


L.H.S. = R.H.S.


It is a right triangle.


(iv) L.H.S. = (Hypotenuse)2 = (4)2 = 16


R.H.S. = (Base)2 + (Height)2 = (1.6)2 + (3.8)2 = 2.56 + 14.44 = 17


L.H.S. ≠ R.H.S.


It is not a right triangle.


(v) L.H.S. = (Hypotenuse)2 = (a + 1)2


R.H.S. = (Base)2 + (Height)2 = (a-1)2 + (2√a)2 = a2 + 1-2a + 4a = a2 + 1 + 2a = (a + 1)2


L.H.S. = R.H.S.


It is a right triangle.


1