In the given figure, O is a point inside a APQR such that ∠POR = 90°, OP = 6 cm and OR = 8 cm. If PQ = 24 cm and QR = 26 cm, prove that ΔPQR is right-angled.
ΔPOR is a right triangle because ∠O = 90°.
In a right angled triangle
(Hypotenuse)2 = (Base)2 + (Height)2
where hypotenuse is the longest side.
(PR)2 = (OP)2 + (OR)2
⇒ PR2 = (6) 2 + (8) 2
⇒ PR2 = 36 + 64 = 100
⇒ PR = 10 m
Now, PR2 + PQ2 = 102 + 242 = 100 + 576 = 676
Also, QR2 = 262 = 676
⇒ PR2 + PQ2 = QR2
which satisfies Pythagoras theorem.
Hence, ∆PQR is right angled triangle.