In ΔABC, AB = AC. Side BC is produced to D. Prove that (AD2 - AC2) = BD • CD.
Draw AE⊥BC. Applying Pythagoras theorem in right-angled triangle AED,
Since, ABC is an isosceles triangle and AE is the altitude and we know that the altitude is also the median of the isosceles triangle.
So, BE = CE
And DE + CE = DE + BE = BD
AD2 = AE2 + ED2
⇒AE2 = AD2 - ED2 …(i)
In ΔACE,
AC2 = AE2 + EC2
⇒ AE2 = AC2 –EC2 …(ii)
Using (i) and (ii),
⇒ AD2 - ED2 = AC2 –EC2
⇒ AD2 - AC2 = ED2–EC2
⇒ AD2 - AC2 = (DE + CE) (DE – CE)
⇒ AD2 - AC2 = (DE + BE) CD
⇒ AD2 - AC2 = BD.CD