Integrate the functions.
![]()
Let 5x - 2 = ![]()
⇒ 5x - 2 = A(2 + 6x) + B
Now, equating the coefficients of x and constant term on both sides, we get,
6A = 5
⇒ A = ![]()
2A + B = -2
⇒ B = ![]()
⇒ 5x - 2 =
(2 + 6x) + 
⇒ 
⇒ ![]()
Now, ![]()
Let 1+2x+3x2 = t
⇒ (2 + 6x)dx = dt
⇒ ![]()
= log|1+2x+3x2| …(1)
And ![]()
1+2x+3x2 = 
⇒ 
⇒ 
⇒ 
⇒ 
…(2)
Thus, from (1) and (2), we get,
⇒ 
⇒ 