Integrate the functions.

Let 6x + 7 = ![]()
⇒ 6x + 7 = A(2x - 9) + B
Now, equating the coefficients of x and constant term on both sides, we get,
2A = 6
⇒ A = 3
-9A + B = 7
⇒ B = 34
⇒ 6x + 7 = 3 (2x - 9) + 34
⇒ 
⇒ 
Now, 
Let x2 – 9x + 20 = t
⇒ (2x - 9)dx = dt
----------(1)
And
x2 – 9x + 20 = ![]()
⇒ 
⇒ 
…(2)
Thus, from (1) and (2), we get,
⇒ 
⇒ 