Evaluate

Let I =

I =


I = I1 + I2


I1 =


Let x2 + 4 = t


2x dx = dt


When x = 0; t = 4


When x = 2; t = 22 + 4 = 8


Substituting t and dt in I1


I1 = []


I1 = 3 [log |8| - log |4|] = 3 log 8/4


I1 = 3 log � = -3 log 2


I2 = = []


I2 =


I2 = = 3π/8


Now I = I1 + I2


I = 3 log � + 3π/8


= 3 log � + 3π/8


20