Taking the set of natural numbers as the universal set, write down the complements of the following sets:
(i) {x : x is an even natural number}
(ii) {x : x is an odd natural number}
(iii) {x : x is a positive multiple of 3}
(iv) {x : x is a prime number}
(v) {x : x is a natural number divisible by 3 and 5}
(vi) {x : x is a perfect square}
(vii) {x : x is a perfect cube}
(viii) {x : x + 5 = 8}
(ix) {x : 2x + 5 = 9}
(x) {x : x ≥ 7}
(xi) {x : x ∈ N and 2x + 1 > 10}
For all parts, given that
(i) Let A = {x : x is an even natural number}
We want to find complement of A , which is given by U - A
⇒ A’ = U - A
⇒ A’ = {x:x ϵ N} - {x : x is an even natural number}
⇒ A’ = {x : x is an odd natural number}
(ii) Let A = {x : x is an odd natural number}
⇒ A’ = U - A
⇒ A’ = {x:x ϵ N} - {x : x is an odd natural number}
⇒ A’ = {x : x is an even natural number}
(iii) Let A = {x : x is a positive multiple of 3}
⇒ A’ = U - A
⇒ A’ = {x:x ϵ N} - {x : x is a positive multiple of 3}
⇒ A’ = {x : x is not a positive multiple of 3}
(iv) Let A = {x : x is a prime number}
⇒ A’ = U - A
⇒ A’ = {x: x ϵ N} - {x : x is a prime number}
⇒ A’ = {x : x is not a prime number}
(v) Let A = {x : x is a natural number divisible by 3 and 5}
∴ A = {x : x is a natural number divisible by 15}
⇒ A’ = U - A
⇒ A’ = {x: x ϵ N} - {x : x is a natural number divisible by 15}
⇒ A’ = {x : x is a natural number not divisible by 15}
(vi) Let A = {x : x is a perfect square}
⇒ A’ = U - A
⇒ A’ = {x: x ϵ N} - {x : x is a perfect square}
⇒ A’ = {x : x is not a perfect square}
(vii) Let A = {x : x is a perfect cube}
⇒ A’ = U - A
⇒ A’ = {x: x ϵ N} - {x : x is a perfect cube}
⇒ A’ = {x : x is not a perfect cube}
(viii) Let A = {x : x + 5 = 8}
∴ A = {x : x = 3}
⇒ A’ = U - A
⇒ A’ = {x: x ϵ N} - {x : x = 3}
⇒ A’ = {x : x ϵ N and x ≠ 3}
(ix) Let A = {x : 2x + 5 = 9}
∴ A = {x : x = 2}
⇒ A’ = U - A
⇒ A’ = {x: x ϵ N} - {x : x = 2}
⇒ A’ = {x : x ϵ N and x ≠ 2}
(x) Let A = {x : x ≥ 7}
⇒ A’ = U - A
⇒ A’ = {x: x ϵ N} - {x : x ≥ 7}
⇒ A’ = {x : x < 7}
(xi) Let A = {x: x ϵ N} - {x : 2x + 1 > 10}
∴ A = {x: x ϵ N and x > 9/2}
⇒ A’ = U - A
A’ = {x:x ϵ N} - {x: x ϵ N and x > 9/2}
⇒ A’ = {x: x ϵ N and x < 9/2}
∴ A’ = {1, 2, 3, 4}