Find the equation of the set of points P, the sum of whose distances from A (4, 0, 0) and B (– 4, 0, 0) is equal to 10.
Let A (4, 0, 0) & B (– 4, 0, 0)
Let the coordinates of point P be (x, y, z)
Calculating PA
P ≡ (x, y, z) and A ≡ (4, 0, 0)
Distance PA
Here,
x1 = x, y1 = y, z1 = z
x2 = 4, y2 = 0, z2 = 0
Distance PA
Calculating PB
P ≡ (x, y, z) and B ≡ (– 4, 0, 0)
Distance PB
Here,
x1 = x, y1 = y, z1 = z
x2 = – 4, y2 = 0, z2 = 0
Distance PB
Given that –
PA + PB = 10
⇒ PA = 10 – PB
Squaring both sides, we get –
PA2 = (10 – PB)2
⇒ PA2 = 100 + PB2 – 20 PB
⇒ (4 – x)2 + (0 – y)2 + (0 – z)2
= 100 + (– 4 – x)2 + (0 – y)2 + (0 – z)2 – 20 PB
⇒ (16 + x2 – 8x) + (y2) + (z2)
= 100 + (16 + x2 + 8x) + (y2) + (z2) – 20 PB
⇒ 20 PB = 16x + 100
⇒ 5 PB = (4x + 25)
Squaring both sides again, we get –
⇒ 25 PB2 = 16x2 + 200x + 625
⇒ 25 [(– 4 – x)2 + (0 – y)2 + (0 – z)2] = 16x2 + 200x + 625
⇒ 25 [x2 + y2 + z2 + 8x + 16] = 16x2 + 200x + 625
⇒ 25x2 + 25y2 + 25z2 + 200x + 400 = 16x2 + 200x + 625
⇒ 9x2 + 25y2 + 25z2 – 225 = 0
This is the required equation.