If the sum of a certain number of terms of the A.P. 25, 22, 19, … is 116. Find the last term.
Given terms of A.P. 25, 22, 19, …………..
Let the sum of n terms of the given A.P. be 116.
Sn = 116
First Term = a = 25, Common Difference = d = 22 – 19 = -3
Putting the value of a, d and Sn
⇒ 116 × 2 = n [50 – 3n + 3]
⇒ 232 = 53n – 3n2⇒ 3n2 – 53n + 232 = 0
⇒ 3n2 – 24n – 29n + 232 = 0
⇒ 3n (n – 8) – 29 (n – 8) = 0
⇒ (3n – 29) (n – 8) = 0
⇒ n = 8 or 29/3
n cannot be equal to 29/3. Therefore, n = 8
Last term = a8 = a + (n – 1)d
a8 = 25 + (8 – 1) × (-3) = 25 – 21
∴ a8 = 4