Which term of the following sequences:
(A) ![]()
(B) ![]()
(c)
A)
Given: 2, 2√2, 4….. and an = 128
Here, in the above G.P.
a = 2
Common ratio(r) = ![]()
We know that in G.P an = arn-1
∴ an = 2 × (√2)n-1
⇒ 128 = 2 × (√2)n-1
⇒ (√2)n-1 = 128/2 = 64
⇒
= 64 (∵ √x = x1/2)
Apply ln on both sides
We get
![]()
⇒ ![]()
⇒ ![]()
⇒ ![]()
⇒ n – 1 = 12
⇒ n = 13
∴ a13 = 128
B)
Given: √3, 3, 3√3 ….. and an = 729
Here, in the above G.P.
a = √3
Common ratio(r) ![]()
We know that in G.P an = arn-1
∴ an = √3 × (√3)n-1
⇒ 729 = (√2)n
⇒ (√2)n = 729
⇒
= 729 (∵ √x =
)
Apply ln on both sides
We get
![]()
![]()
![]()
![]()
⇒ n = 12
∴ a12 = 729
C)
Given:
and an = ![]()
Here, in the above G.P.
a = ![]()
Common ratio(r) =
= ![]()
We know that in G.P an = arn-1
∴ an = ![]()
![]()
![]()
⇒ ![]()
Apply ln on both sides
We get
![]()
⇒ ![]()
⇒ ![]()
⇒ n = 9
∴ a9 = ![]()