Find the sum to indicated number of terms in each of the geometric progressions in

1, – a, a2, – a, ... n terms (if a – 1).

Given: 1, – a, a2, – a, ... n terms


Sum of n terms of a G.P. is given by: (a: First term of G.P, r: common difference of G.P, n: Number of terms of the G.P)


First term of the Given G.P (a) = 1


Common difference of the given G.P(r) = = -a


Number of terms(n): n


Let the sum of n terms be s


s =


s =


s = [


The sum of n terms of the given sequence is: [1-(-a)n]


15