Let f = {(1, 1), (2, 3), (0, –1), (–1, –3)} be a function from Z to Z defined by f(x) = ax + b, for some integers a, b. Determine a, b.
Given: f = {(1, 1), (2, 3), (0, –1), (–1, –3)}
f(x) = ax + b
(1,1) Є f ⇒ for x = 1, f(x) = 1
⇒ 1 = a(1) + b
⇒ a+b = 1 …. (1)
Similarly, (0, -1) Є f ⇒ for x = 0, f(x) = -1
⇒ -1 = a(0) + b
⇒ b = -1
⇒ a-1 = 1 (from 1)
⇒ a = 2.
Hence a = 2 and b = -1.