Prove that cos2 2x – cos2 6x = sin 4x sin 8x
To prove cos2 2x – cos2 6x = sin 4x sin 8x
RHS = sin 4x sin 8x
LHS = cos2 2x – cos2 6x
= (1 – sin2 2x) – (1 – sin2 6x)
= 1 – sin2 2x – 1 + sin2 6x
= sin2 6x – sin2 2x
= (sin 6x – sin 2x) (sin 6x + sin 2x) [a2 – b2 = (a – b)(a + b)]
Rearranging we get
LHS = (2 × sin 2x × cos 2x)(2 × sin 4x × cos 4x)
LHS = sin 4x sin 8x [∵ 2sin A cos A = sin 2A]
∴ LHS = RHS
Hence, proved.