Prove that sin 2x + 2 sin 4x + sin 6x = 4 cos2x sin 4x

To prove sin 2x + 2 sin 4x + sin 6x = 4 cos2x sin 4x

RHS = 4 cos2 x sin 4x


LHS = sin 2x + 2 sin 4x + sin 6x


= 2 sin 4x + sin 6x + sin 2x


We know,



LHS = 2 sin 4x + 2 sin 4x cos 2x


= 2 sin 4x × (1 + cos 2x)


= 2 sin 4x × 2 cos2 x [ cos2x = 2cos2 x – 1]


LHS = 4 cos2 x sin 4x


LHS = RHS


Hence, proved.


16