Prove that sin 2x + 2 sin 4x + sin 6x = 4 cos2x sin 4x
To prove sin 2x + 2 sin 4x + sin 6x = 4 cos2x sin 4x
RHS = 4 cos2 x sin 4x
LHS = sin 2x + 2 sin 4x + sin 6x
= 2 sin 4x + sin 6x + sin 2x
We know,
LHS = 2 sin 4x + 2 sin 4x cos 2x
= 2 sin 4x × (1 + cos 2x)
= 2 sin 4x × 2 cos2 x [∵ cos2x = 2cos2 x – 1]
LHS = 4 cos2 x sin 4x
∴ LHS = RHS
Hence, proved.