Prove that (sin 3x + sin x) sin x + (cos 3x – cos x) cos x = 0

We know that



Replacing x with 3x and y with x, we get-



sin 3x + sin x = 2 sin 2x cos x …(1)


Similarly,


We know that



Replacing x with 3x and y with x, we get-



cos 3x - cos x = -2 sin 2x sin x …(2)


Now,


L.H.S = (sin 3x + sin x) sin x + (cos 3x – cos x) cos x


= (2 sin 2x cos x) sin x + (-2 sin 2x sin x) cos x


= 2 sin 2x cos x sin x - 2 sin 2x sin x cos x


= 0


= R.H.S


Hence, L.H.S = R.H.S…Proved


3