ABCD is a rhombus such that ∠ACB = 40°. Then ∠ADB is
Given: ABCD is a rhombus
∠ACB = 40°
∵ ∠ACB = 40°
⇒ ∠OCB = 40°
∵ AD ∥ BC
⇒ ∠DAC = ∠BCA = 40° [Alternate interior angles]
⇒ ∠DAO = 40°
Since, diagonals of a rhombus are perpendicular to each other
∴ ∠AOD = 90°
Sum of all angles of a triangle is 180°
⇒ ∠AOD + ∠ADO + ∠DAO = 180°
⇒ 90° + ∠ADO + 40° = 180°
⇒ 130° + ∠ADO = 180°
⇒ ∠ADO = 180° – 130°
⇒ ∠ADO = 150°
⇒ ∠ADB = 150°
Hence, ∠ADB = 150°