ABCD is a rhombus such that ACB = 40°. Then ADB is

Given: ABCD is a rhombus


ACB = 40°



∵ ∠ACB = 40°


OCB = 40°


AD BC


DAC = BCA = 40° [Alternate interior angles]


DAO = 40°


Since, diagonals of a rhombus are perpendicular to each other


∴ ∠AOD = 90°


Sum of all angles of a triangle is 180°


⇒ ∠AOD + ADO + DAO = 180°


90° + ADO + 40° = 180°


130° + ADO = 180°


⇒ ∠ADO = 180° 130°


⇒ ∠ADO = 150°


⇒ ∠ADB = 150°


Hence, ADB = 150°

3