The diagonals AC and BD of a parallelogram ABCD intersect each other at the point O. If ∠DAC = 32° and ∠AOB = 70°, then ∠DBC is equal to
Given: ∠AOB = 70°
∠DAC = 32°
∵ AD ∥ BC and AC is transversal
∴ ∠ACB = 32°
Now,
∠AOB + ∠BOC = 180°
⇒ 70° + ∠BOC = 180°
⇒ ∠BOC = 180° - 70°
⇒ ∠BOC = 110°
Sum of all angles of a triangle = 180°
⇒ ∠BOC + ∠BCO + ∠OBC = 180°
⇒ 110° + 32°+ ∠OBC = 180°
⇒ 142°+ ∠OBC = 180°
⇒ ∠OBC = 180° - 142°
⇒ ∠OBC = 38°
Hence, ∠DBC = 38°