Find the area of a parallelogram given in Fig. 12.2. Also find the length of the altitude from vertex A on the side DC.
Area of parallelogram(ABCD) = Area(ΔBCD) + Area(ΔABD)
For Area(ΔBCD),
a = 12, b = 17, c = 25
s = (a + b + c)/2
⇒ s = (12 + 17 + 25)/2 = 54/2 = 27.
Area(ΔBCD) = √s(s-a)(s-b)(s-c)
⇒ Area(ΔBCD) = √27(27-12)(27-17)(27-25)
⇒ Area(ΔBCD) = √27×15×10×2
⇒ Area(ΔBCD) = 90 cm2
As ABCD is a parallelogram, Area(ΔBCD) = Area(ΔABD)
⇒ Area of parallelogram(ABCD) = Area(ΔBCD) + Area(ΔABD)
⇒ Area of parallelogram(ABCD) = 90 + 90
⇒ Area of parallelogram(ABCD) = 180 cm2
Also, Area of parallelogram(ABCD) = CD × (Altitude from A)
⇒ 180 = 12 × (Altitude from A)
⇒ Altitude from A = 15 cm