The sides of a quadrilateral ABCD are 6 cm, 8cm, 12 cm and 14 cm (taken in order) respectively, and the angle between the first two sides is a right angle. Find its area.
We join A to C to complete the Δ ABC,
In Δ ABC,
AC2 = AB2 + BC2
⇒ AC2 = 62 + 82
⇒ AC2 = 36 + 64
⇒ AC2 = 100
⇒ AC = 10cm
Area(ΔABC) = 1/2 × AB × BC
⇒ Area(ΔABC) = 1/2 × 6 × 8
⇒ Area(ΔABC) = 24cm2
For area of ΔACD,
a = 12, b = 14, c = 10
s = (a + b + c)/2
⇒ s = (12 + 14 + 10)/2 = 36/2 = 18.
Area(ΔACD) = √s(s-a)(s-b)(s-c)
⇒ Area(ΔACD) = √18(18-12)(18-14)(18-10)
⇒ Area(ΔACD) = √18×6×4×8
⇒ Area(ΔACD) = 24√6 = 58.78cm2
Area(ABCD) = Area(ΔABC) + Area(ΔACD)
⇒ Area(ABCD) = 24 + 58.78 = 82.78 cm2