Factorise:
(i). (i) (a)3 + (−2b)3 + (−4c)3 − 3(a)(−2b)(−4c) =[a + (−2b + ( – 4c)][(a)2 + (−2b)2 + (−4c)2−(a)(−2b)−(−2b)(−4c)− (−4c)(a)] [∵a3 + b3 + c3 – 3abc = (a + b + c)(a2 + b2 + c2 – ab – bc – ca) ] = (a– 2b – 4c)(a2 + 4b2 + 16c2 + 2ab – 8bc + 4ca) (ii). Given that: 2√2a3 + 8b3 – 27c3 + 18√2abc = (√2a)3 + (2b)3 + (−3c)3 − 3(√2a)(2b)(3c) =[√2a + (2b) + (−3c)][(√2a)2 + (2b)2 + (−3c)2−(√2a)(2b)−(2b)(−3c)− (−3c)(√2a)] [∵ a3 + b3 + c3 – 3abc = (a + b + c)(a2 + b2 + c2 – ab – bc – ca) ] = (√2a + 2b – 3c)(2a2 + 4b2 + 9c2 − 2√2ab + 6bc + 3√2ca)