Evaluate the following products without actual multiplication.
999 × 999
999 can be written as (1000 – 1)
⇒ 999 × 999 = (1000 – 1) × (1000 – 1)
⇒ 999 × 999 = (1000 – 1)2
Using identity (a – b)2 = a2 – 2ab + b2
Here a = 1000 and b = 1
⇒ 999 × 999 = 10002 – 2(1000)(1) + 12
⇒ 999 × 999 = 1000000 – 2000 + 1
⇒ 999 × 999 = 998000 + 1
⇒ 999 × 999 = 998001