In Fig. 6.17, ∠Q > ∠R, PA is the bisector of ∠QPR and PM ⊥ QR. Prove that ∠APM = (∠Q – ∠R).
It is given to us –
∠Q > ∠R
PA is the bisector of ∠QPR
⇒ ∠QPA = ∠RPA - - - - (i)
PM ⊥ QR
⇒ ∠PMR = ∠PMQ = 90° - - - - (ii)
We have to prove that ∠APM = 1/2 (∠Q - ∠R)
Since, the sum of the three angles of a triangle is equal to 180°, in ΔPQM,
∠PQM + ∠PMQ + ∠QPM = 180°
⇒ ∠PQM + 90° + ∠QPM = 180° [From equation (ii)]
⇒ ∠PQM + ∠QPM = 180° - 90°
⇒ ∠PQM + ∠QPM = 90°
⇒ ∠PQM = 90° - ∠QPM - - - - (iii)
Similarly, in ΔPMR, the sum of the three angles of a triangle is equal to 180°
⇒ ∠PMR + ∠PRM + ∠RPM = 180°
⇒ 90° + ∠PRM + ∠RPM = 180° [From equation (ii)]
⇒ ∠PRM + ∠RPM = 180° - 90°
⇒ ∠PRM + ∠RPM = 90°
⇒ ∠PRM = 90° - ∠RPM - - - - (iv)
Now, on subtracting equation (iv) from equation (iii), we get
∠PQM - ∠PRM = (90° - ∠QPM) - (90° - ∠RPM) ×
⇒ ∠Q - ∠R = 90° - ∠QPM - 90° + ∠RPM
⇒ ∠Q - ∠R = ∠RPM - ∠QPM
⇒ ∠Q - ∠R = (∠RPA + ∠APM) - (∠QPA - ∠APM)
⇒ ∠Q - ∠R = ∠RPA + ∠APM - ∠QPA + ∠APM
⇒ ∠Q - ∠R = ∠QPA + 2 × ∠APM - ∠QPA [From equation (i)]
⇒ ∠Q - ∠R = 2 × ∠APM
⇒ ∠APM = 1/2 (∠Q - ∠R)
Hence, proved.