If 3 + 5 + 7 + 9 + ... upto n terms = 288, then n = ……
We have a = 3
Then d = 5 – 3 = 2
Then, Sn = 288
We can recall that, Sn = × (2a + (n – 1)d)
So, Sn = × (2(3) + (n – 1)2)
⇒ Sn = × (6 + 2n – 2)
⇒ Sn = × (4 + 2n)
⇒ Sn = n × (2 + n)
⇒ Sn = n2 + 2n
⇒ n2 + 2n = 288
⇒ n2 + 2n – 288 = 0
⇒ n2 + 18n – 16n – 288 = 0
⇒ n(n + 18) – 16(n + 18) = 0
⇒ (n + 18)(n – 16)= 0
So we have n = – 18 or 16
But as n cannot be negative so, we have n = 16
∴ the correct option is (c)