ABCD is a cyclic quadrilateral whose diagonals intersect at a point E. If DBC = 70°, BAC is 30°, find BCD. Further, if AB = BC, find ECD.

For chord CD,

CBD = CAD (Angles in the same segment)


CAD = 70o


BAD = BAC + CAD


= 30o + 70o


= 100o


BCD + BAD = 180° (Opposite angles of a cyclic quadrilateral)


BCD + 100o = 180o


BCD = 80o



In ΔABC,


AB = BC (Given)


BCA = CAB (Angles opposite to equal sides of a triangle)


BCA = 30°


We have,


BCD = 80°


BCA + ACD = 80°


30° + ACD = 80°


ACD = 50°


ECD = 50°


35