Use suitable identities to find the following products:
(i) (x + 4) (x + 10)
(ii) (x + 8) (x - 10)
(iii) (3x + 4) (3x - 5)
(iv)
(v) (3 - 2x) (3 + 2x)
(i) (x + 4) (x + 10)
Using identity,
(x + a) (x + b) = x2 + (a + b)x + ab
In (x + 4) (x + 10), a = 4 and b = 10
Now,
(x + 4) (x + 10) = x2 + (4 + 10)x + (4 * 10)
= x2 + 14x + 40
(ii) (x + 8) (x - 10)
Using identity,
(x + a) (x + b) = x2 + (a + b) x + ab
Here, a = 8 and b = -10
(x + 8) (x – 10) = x2 + {8 + (-10)} x + {8 * (-10)}
= x2 + (8 – 10)x – 80
= x2 – 2x – 80
(iii) (3x + 4) (3x - 5)
Using identity,
(x + a) (x + b) = x2 + (a + b) x + ab
Here, x = 3x, a = 4 and b = -5
(3x + 4) (3x – 5) = (3x)2 + {4 + (-5)} 3x + {4 * (-5)}
= 9x2 + 3x (4 – 5) – 20
= 9x2 – 3x – 20
(iv)
Using identity,
(x + y) (x – y) = x2 – y2
Here, x = y2 and y = 3/2
(v) (3 - 2x) (3 + 2x)
Using identity,
(x + y) (x – y) = x2 – y2
Here, x = 3 and y = 2x
(3 – 2x) (3 + 2x) = 32 – (2x)2
= 9 – 4x2