Factorize each of the following:

(i)


(ii)


(iii)


(iv)


(v)

(i) Using identity,

(a + b)3 = a3 + b3 + 3a2b + 3ab2


8a3 + b3 + 12a2b + 6ab2


= (2a)3 + b3 + 3 (2a) (2b) + 3 (2a) (b)2


= (2a + b)3


= (2a + b) (2a + b) (2a + b)


(ii) Using identity,


(a + b)3 = a3 + b3 + 3a2b + 3ab2


8a3 – b3 – 12a2b + 6ab2


= (2a)3 – b3 – 3 (2a)2b + 3 (2a) (b)2


= (2a – b)3


= (2a – b) (2a – b) (2a – b)


(iii) Using identity,


(a + b)3 = a3 + b3 + 3a2b + 3ab2


27 – 125a3 – 135a + 225a2


= 33 – (5a)3 – 3 (3)2(5a) + 3 (3) (5a)2


= (3 – 5a)3


= (3 – 5a) (3 – 5a) (3 – 5a)


(iv) Using identity,


(a + b)3 = a3 + b3 + 3a2b + 3ab2


64a3 – 27b3 – 144a2b + 108ab2


= (4a)3 – (3b)3 – 3 (4a)2 (3b) + 3 (4a) (3b)2


= (4a – 3b)2


= (4a – 3b) (4a – 3b) (4a – 3b)


(v) Using identity,


(a + b)3 = a3 + b3 + 3a2b + 3ab2


27p3 - - p2 + p


= (3p)3 – ()3 – 3 (3p)2 () + 3 (3p) ()2


= (3p - )3


= (3p - ) (3p - ) (3p - )


25