Verify that:

We know that,


x3 + y3 + z3 – 3xyz = (x + y + z) (x2 + y2 + z2 – xy – yz – xz)


 


x3 + y3 + z3 – 3xyz = ½ × (x + y + z) 2 (x2 + y2 + z2 – xy – yz – xz)


 


= ½ (x + y + z) (2x2 + 2y2 + 2z2 – 2xy – 2yz – 2xz)


 


= ½ (x + y + z) [(x2 + y2 – 2xy) + (y2 + z2 – 2yz) + (x2 + z2 – 2xz)]


 


= ½ (x + y + z) [(x - y)2 + (y – z)2 + (z – x)2]


= R.H.S


 

45