Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.

(i) x2 - 2x - 8

(ii) 4s2 - 4s + 1

(iii) 6x2 - 3 - 7x

(iv) 4u2 + 8u

(v) t2 - 15

(vi) 3x2 - x - 4

 (i) x- 2x - 8

= (x - 4)(x + 2)

 The value of x2 - 2x - 8 is zero when x − 4 = 0 or x + 2 = 0,

i.e, x = 4 or x = −2

Therefore, The zeroes of x- 2x - 8 are 4 and −2

 Sum of zeroes =

Hence, it is verified that, 

Product of zeroes =

Hence, it is verified that, 


(ii)
 4s2 - 4s + 1

= (2s - 1)2

The value of 4s2 − 4s + 1 is zero when 2s − 1 = 0, when, s = 1/2

Therefore, the zeroes of 4s2 − 4s + 1 are 1/2 and 1/2

Sum of zeroes =

Product of zeroes =

Hence Verified. 


(iii)
 6x- 7x - 3

= (3x + 1)(2x - 3)

The value of 6x2 − 3 − 7x is zero when 3x + 1 = 0 or 2x − 3 = 0,

i.e.  

Therefore, the zeroes of 6x2 − 3 − 7x are .

Sum of zeroes =

Product of zeroes =

 Hence, verified.


(iv)
 4u+ 8u = 4u+ 8u + 0

= 4u (u + 2)

The value of 4u2 + 8u is zero when 4u = 0 or u + 2 = 0,

i.e., u = 0 or u = −2

Therefore, the zeroes of 4u2 + 8u are 0 and −2.

Sum of zeroes =

Product of zeroes =


 (v) t2 – 15

= t2 – (√15)2

= (t - √15)(t + √15)

 The value of t2 − 15 is zero when (t - √15) = 0 or (t + √15) = 0,

i.e., when t = √15 or t = -√15

Therefore, the zeroes of t2 − 15 are √15 and -√15.

 Sum of zeroes =

Product of zeroes =

Hence verified.


(vi) 3x2 – x – 4

= (3x – 4 )(x + 1)

The value of 3x2x − 4 is zero when 3x − 4 = 0 or x + 1 = 0,

when x = 4/3 or x = −1

Therefore, the zeroes of 3x2x − 4 are 4/3 and −1.

Sum of zeroes =

Product of zeroes =

Hence, verified. 

31