Evaluate the following Integrals:

Let 
As we have the trigonometric identity

to evaluate this integral we use x2 = a2cos 2θ
⇒ 2xdx = –2a2sin(2θ)dθ (Differentiating both sides)
⇒ xdx = –a2sin(2θ)dθ


When x = a, a2cos 2θ = a2⇒ cos 2θ = 1
⇒ 2θ = 0 ⇒ θ = 0
So, the new limits are  and 0.
 and 0.
Also,



Substituting this in the original integral,




But, we have 2 sin2θ = 1 – cos 2θ






