Solve the following differential equations:
Given Differential equation is:
⇒
……(1)
Let us assume z = x + y + 1
Differentiating w.r.t x on both the sides we get,
⇒ ![]()
⇒ ![]()
⇒ ![]()
⇒
……(2)
Substituting (2) in (1) we get,
⇒ ![]()
⇒ ![]()
Bringing like variables on same (i.e, variable seperable technique) we get,
⇒ ![]()
Integrating on both sides we get,
⇒ ![]()
We know that
and
Also ∫adx = ax + C
⇒ ![]()
⇒ tan–1z = x + C
We know that z = x + y + 1 , substituting this we get,
⇒ tan–1(x + y + 1) = x + C
∴ The solution for the given Differential equation is tan–1(x + y + 1) = x + C