Solve the following differential equations:
Given Differential Equation is:
⇒ ……(1)
Let us assume z = x + y
Differentiating w.r.t x on both sides we get,
⇒
⇒
⇒ ……(2)
Substituting (2) in (1) we get,
⇒
⇒
Bringing like variables on same side(i.e, variable seperable technique) we get,
⇒
We know that
⇒
⇒
We know that cos2z = cos2z – sin2z = 2cos2z – 1
⇒
⇒
⇒
We know that 1 + tan2x = sec2x
⇒
⇒
Integrating on both sides we get,
⇒
We know that:
(1) ∫sec2xdx = tanx + C
(2) ∫adx = ax + C
⇒
Since z = x + y, we substitute this,
⇒
⇒
⇒
∴ the solution for the given differential equation is .