Solve the following equations:
(x2 – y2)dx – 2xydy = 0
Given differential equation is:
⇒ (x2 – y2)dx – 2xydy = 0
⇒ (x2 – y2)dx = 2xydy
⇒ 
 ……(1)
Homogeneous equation: A equation is said to be homogeneous if f(zx,zy) = znf(x,y) (where n is the order of the homogeneous equation).
Let us assume ![]()
⇒ ![]()
⇒ ![]()
⇒ ![]()
⇒ ![]()
⇒ f(zx,zy) = z0f(x,y)
So, given differential equation is a homogeneous differential equation.
We need a substitution to solve this type of linear equation and the substitution is y = vx.
Let us substitute this in (1)
⇒ ![]()
We know that:
![]()
⇒ ![]()
⇒ ![]()
⇒ ![]()
⇒ ![]()
⇒ ![]()
⇒ ![]()
Bringing Like variables on same sides we get,
⇒ ![]()
⇒ ![]()
⇒ ![]()
We know that:
![]()
Integrating on both sides, we get,
⇒ ![]()
⇒ ![]()
(∵ logC is an arbitrary constant)
Multiplying with -3 on both sides we get,
⇒ log|1-3v2| = -3logx + 3logC
⇒ ![]()
(∵ 
)
⇒ ![]()
(∵ alogx = logxa)
⇒ ![]()
Applying exponential on both sides we get,
⇒ ![]()
Since y = vx, we get,
![]()
⇒ ![]()
⇒ ![]()
⇒ ![]()
⇒ ![]()
Cross multiplying on both sides we get,
⇒ x(x2 – 3y2) = c3
⇒ x3 – 3xy2 = K (say any arbitrary constant)
∴ The solution for the differential equation is x3 – 3xy2 = K