Find the directional cosines of the sides of the triangle whose vertices are (3,5,–4), (–1,1,2), (–5,–5,–2).
Let us write the given points as:
⇒ A = (3,5,–4)
⇒ B = (–1,1,2)
⇒ C = (–5,–5,–2)
Let us assume the direction ratios of sides AB be (r1,r2,r3), BC be (r4,r5,r6) and CA be (r7,r8,r9)
We know that direction ratios for a line passing through points (x1, y1, z1) and (x2, y2, z2) is (x2–x1, y2–y1, z2–z1).
Let us find the direction ratios for the side AB
⇒ (r1,r2,r3) = (–1–3, 1–5, 2–(–4))
⇒ (r1,r2,r3) = (–1–3, 1–5, 2+4)
⇒ (r1,r2,r3) = (–4,–4,6)
Let us find the direction ratios for the side BC
⇒ (r4,r5,r6) = (–5–(–1), –5–1, –2–2)
⇒ (r4,r5,r6) = (–5+1, –5–1, –2–2)
⇒ (r4,r5,r6) = (–4,–6,–4)
Let us find the direction ratios for the side CA
⇒ (r7,r8,r9) = (3–(–5), 5–(–5), –4–(–2))
⇒ (r7,r8,r9) = (3+5, 5+5, –4+2)
⇒ (r7,r8,r9) = (8,10,–2)
Let us assume be the direction cosines of line AB,
be the direction cosines of line BC and
be the direction cosines of line CA.
We know that for a line of direction ratios r1, r2, r3 and having direction cosines has the following property.
⇒
⇒
⇒
Let us follow the above property and find the direction cosines of each side.
Now, let’s find the direction cosines of side AB,
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
The direction cosines for the side AB is .
Let’s find the directional cosines for the side BC,
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
The direction cosines for the sides BC is .
Let’s find the direction cosines for the side CA,
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
The direction cosines for the sides CA is .