In an equilateral triangle ABC, D is a point on side BC such that Prove that 9AD= 7AB2

Let the side of the equilateral triangle be a, and AE be the altitude of ΔABC


BE = EC =BC/2 = a/2


And, then, in ΔABE, we write,


AE= AB- BE2


or AE= a- a2/4 


AE = 


Given that, BD = 1/3 BC


BD = a/3


DE = BE – BD


= a/2 – a/3


= a/6


Applying Pythagoras theorem in ΔADE, we obtain


AD2 = AE2 + DE2



or  


or 


or 


Now, a = AB or a = AB2


or 


or 36 AD= 28 AB2


9 AD2 = 7 AB

15