Solve the following pair of linear equations.
(i) px + qy = p - q
qx - py = p + q
(ii) ax + by = c
bx + ay = 1 + c
(iii)
ax + by = a2 + b2
(iv) (a - b) x + (a + b) y = a2 - 2ab - b2
(a + b) (x + y) = a2 + b2
(v) 152x - 378y = - 74
-378x + 152y = - 604
(i) px + qy = p - q … (1) qx - py = p + q … (2)
Multiplying equation (1) by p and equation (2) by q,
we obtain p2x + pqy = p2 - pq … (3)
q2x - pqy = pq + q2 … (4)
Adding equations (3) and (4),
we obtain p2x + q2 x = p2 + q2
(p2 + q2) x = p2 + q2
From equation (1),
we obtain p (1) + qy = p - q
qy = - q
y = - 1
(ii) ax + by = c … (1) bx + ay = 1 + c … (2)
Multiplying equation (1) by a and equation (2) by b,
we obtain a2x + aby = ac … (3)
b2x + aby = b + bc … (4)
Subtracting equation (4) from equation (3),
(a2 - b2) x = ac - bc – b
From equation (1), we obtain ax + by = c
(iii)
Or, bx - ay = 0 … (1)
ax + by = a2 + b2 … (2)
Multiplying equation (1) and (2) by b and a respectively, we obtain b2x - aby = 0 … (3)
a2x + aby = a3 + ab2 … (4)
Adding equations (3) and (4), we obtain b2x + a2x = a3 + ab2
x (b2 + a2) = a (a2 + b2) x = a
By using (1), we obtain b (a) - ay = 0
ab - ay = 0
ay = ab
y = b
(iv) (a - b) x + (a + b) y = a2 - 2ab - b2 … (1)
(a + b) (x + y) = a2 + b2
(a + b) x + (a + b) y = a2 + b2 … (2)
Subtracting equation (2) from (1),
we obtain
(a - b) x - (a + b) x = (a2 - 2ab - b2) - (a2 + b2) (a - b - a - b) x = - 2ab - 2b2
- 2bx = - 2b (a + b) x = a + b
Using equation (1), we obtain
(a - b) (a + b) + (a + b) y = a2 - 2ab - b2a2 - b2 + (a + b) y = a2 - 2ab - b2
(a + b) y = - 2ab
(v) 152x - 378y = - 74 ------------(1)
-378x + 152y = -604 -------- (2)
Multiply eq (2) by 152 and equation (1) by 378
378 × 152x – 3782y = -74 × 378
-378 × 152x + 1522y = -604 × 152
Adding both the questions we get
(1522 – 3782)y = -119780
-119780y = -119780
y = 1
put the value in eq 1, we get x = 2