Prove the following identities –
Let
Recall that the value of a determinant remains same if we apply the operation Ri→ Ri + kRj or Ci→ Ci + kCj.
Applying R1→ R1 + R2, we get
Applying R1→ R1 + R3, we get
Taking the term (a2 + a + 1) common from R1, we get
Applying C2→ C2 – C1, we get
Applying C3→ C3 – C1, we get
Expanding the determinant along R1, we have
Δ = (a2 + a + 1)(1)[(1 – a2)(1 – a) – (a2 – a)(a – a2)]
⇒ Δ = (a2 + a + 1)(1 – a – a2 + a3 – a3 + a4 + a2 – a3)
⇒ Δ = (a2 + a + 1)(1 – a – a3 + a4)
⇒ Δ = (a2 + a + 1)(a4 – a3 – a + 1)
⇒ Δ = (a2 + a + 1)[a3(a – 1) – (a – 1)]
⇒ Δ = (a2 + a + 1)(a – 1)(a3 – 1)
⇒ Δ = (a – 1)(a2 + a + 1)(a3 – 1)
⇒ Δ = (a3 – 1)(a3 – 1)
∴ Δ = (a3 – 1)2
Thus,