Solve the following determinant equations:
Let
We need to find the roots of Δ = 0.
Recall that the value of a determinant remains same if we apply the operation Ri→ Ri + kRj or Ci→ Ci + kCj.
Applying C1→ C1 + C2, we get
Applying R2→ R2 – R1, we get
Applying R3→ R3 – 3R1, we get
Expanding the determinant along C1, we have
Δ = (1)[(10)(2 – 3sin(3θ)) – (20)(cos(2θ) – sin(3θ))]
⇒ Δ = [20 – 30sin(3θ) – 20cos(2θ) + 20sin(3θ)]
⇒ Δ = 20 – 10sin(3θ) – 20cos(2θ)
From trigonometry, we have sin(3θ) = 3sinθ – 4sin3θ and cos(2θ) = 1 – 2sin2θ.
⇒ Δ = 20 – 10(3sinθ – 4sin3θ) – 20(1 – 2sin2θ)
⇒ Δ = 20 – 30sinθ + 40sin3θ – 20 + 40sin2θ
⇒ Δ = –30sinθ + 40sin2θ + 40sin3θ
∴ Δ = 10(sinθ)(–3 + 4sinθ + 4sin2θ)
The given equation is Δ = 0.
⇒ 10(sinθ)(–3 + 4sinθ + 4sin2θ) = 0
⇒ (sinθ)(–3 + 4sinθ + 4sin2θ) = 0
Case – I:
sin θ = 0 ⇒ θ = kπ, where k ϵ Z
Case – II:
–3 + 4sinθ + 4sin2θ = 0
⇒ 4sin2θ + 4sinθ – 3 = 0
⇒ 4sin2θ + 6sinθ – 2sinθ – 3 = 0
⇒ 2sinθ(2sinθ + 3) – 1(2sinθ + 3) = 0
⇒ (2sinθ – 1)(2sinθ + 3) = 0
⇒ 2sinθ – 1 = 0 or 2sinθ + 3 = 0
⇒ 2sinθ = 1 or 2sinθ = –3
or
However, as –1 ≤ sin θ ≤ 1.
, where k ϵ Z
Thus, kπ and for all integral values of k are the roots of the given determinant equation.