If , then using properties of determinants, find the value of
, where
.
Let
Given that Δ = 0.
Recall that the value of a determinant remains same if we apply the operation Ri→ Ri + kRj or Ci→ Ci + kCj.
Applying R2→ R2 – R1, we get
Applying R3→ R3 – R1, we get
Expanding the determinant along C3, we have
⇒ Δ = (c – z)[0 – (–x)(y)] – 0 + z[(a)(y) – (–x)(b – y)]
⇒ Δ = (c – z)(xy) + z[ay + xb – xy]
⇒ Δ = cxy – xyz + ayz + bxz – xyz
∴ Δ = ayz + bxz + cxy – 2xyz
We have Δ = 0
⇒ ayz + bxz + cxy – 2xyz = 0
⇒ ayz + bxz + cxy = 2xyz
Thus, when
.