Find , when
y = (sin x)cos x + (cos x)sin x
let y = (sin x)cos x + (cos x)sin x
⇒ y = a + b
where a= (sin x)cos x; b = (cos x)sin x
a= (sin x)cos x
Taking log both the sides:
⇒ log a= log (sin x)cos x
⇒ log a= cos x log (sin x)
{log xa = alog x}
Differentiating with respect to x:
b = (cos x)sin x
Taking log both the sides:
⇒ log b= log (cos x)sin x
⇒ log b= sin x log (cos x)
{log xa = alog x}
Differentiating with respect to x: