Solve the following system of the linear equations by Cramer’s rule:
x – 4y – z = 11
2x – 5y + 2z = 39
– 3x + 2y + z = 1
Given: - Equations are: –
x – 4y – z = 11
2x – 5y + 2z = 39
– 3x + 2y + z = 1
Tip: - Theorem – Cramer’s Rule
Let there be a system of n simultaneous linear equations and with n unknown given by
and let Dj be the determinant obtained from D after replacing the jth column by
Then,
provided that D ≠ 0
Now, here we have
x – 4y – z = 11
2x – 5y + 2z = 39
– 3x + 2y + z = 1
So by comparing with theorem, lets find D , D1 and D2
Solving determinant, expanding along 1st row
⇒ D = 1[( – 5)(1) – (2)(2)] + 4[(2)(1) + 6] – 1[4 + 5( – 3)]
⇒ D = 1[ – 5 – 4] + 4[8] – [ – 11]
⇒ D = – 9 + 32 + 11
⇒ D = 34
Again,
Solving determinant, expanding along 1st row
⇒ D1 = 11[( – 5)(1) – (2)(2)] + 4[(39)(1) – (2)(1)] – 1[2(39) – ( – 5)(1)]
⇒ D1 = 11[ – 5 – 4] + 4[39 – 2] – 1[78 + 5]
⇒ D1 = 11[ – 9] + 4(37) – 83
⇒ D1 = – 99 – 148 – 45
⇒ D1 = – 34
Again
Solving determinant, expanding along 1st row
⇒ D2 = 1[39 – 2] – 11[2 + 6] – 1[2 + 117]
⇒ D2 = 1[37] – 11(8) – 119
⇒ D2 = – 170
And,
⇒
Solving determinant, expanding along 1st row
⇒ D3 = 1[ – 5 – (39)(2)] – ( – 4)[2 – (39)( – 3)] + 11[4 – ( – 5)( – 3)]
⇒ D3 = 1[ – 5 – 78] + 4(2 + 117) + 11(4 – 15)
⇒ D3 = – 83 + 4(119) + 11( – 11)
⇒ D3 = 272
Thus by Cramer’s Rule, we have
⇒
⇒
⇒ x = – 1
again,
⇒
⇒
⇒ y = – 5
and,
⇒
⇒
⇒ z = 8