Solve the following system of the linear equations by Cramer’s rule:

2x – 3y – 4z = 29


– 2x + 5y – z = – 15


3x – y + 5z = – 11

Given: - Equations are: –


2x – 3y – 4z = 29


– 2x + 5y – z = – 15


3x – y + 5z = – 11


Tip: - Theorem – Cramer’s Rule


Let there be a system of n simultaneous linear equations and with n unknown given by







and let Dj be the determinant obtained from D after replacing the jth column by



Then,


provided that D ≠ 0


Now, here we have


2x – 3y – 4z = 29


– 2x + 5y – z = – 15


3x – y + 5z = – 11


So by comparing with theorem, lets find D , D1 and D2



Solving determinant, expanding along 1st Row


D = 2[(5)(5) – ( – 1)( – 1)] – ( – 3)[( – 2)(5) – 3( – 1)] + ( – 4)[( – 2)( – 1) – 3(5)]


D = 2[25 – 1] + 3[ – 10 + 3] – 4[2 – 15]


D = 48 – 21 + 52


D = 79


Again, Solve D1 formed by replacing 1st column by B matrices


Here




Solving determinant, expanding along 1st Row


D1 = 29[(5)(5) – ( – 1)( – 1)] – ( – 3)[( – 15)(5) – ( – 11)( – 1)] + ( – 4)[( – 15)( – 1) – ( – 11)(5)]


D1 = 29[25 – 1] + 3[ – 75 – 11] – 4[15 + 55]


D1 = 29[24] + 3[ – 86] – 4(70)


D1 = 696 – 258 – 280


D1 = 158


Again, Solve D2 formed by replacing 2nd column by B matrices


Here




Solving determinant, expanding along 1st Row


D2 = 2[( – 15)(5) – ( – 11)( – 1)] – 29[( – 2)(5) – 3( – 1)] + ( – 4)[( – 11)( – 2) – 3( – 15)]


D2 = 2[ – 75 – 11] – 29( – 10 + 3) – 4(22 + 45)


D2 = 2[ – 86] – 29( – 7) – 4(67)


D2 = – 172 + 203 – 268


D2 = – 237


And, Solve D3 formed by replacing 1st column by B matrices


Here




Solving determinant, expanding along 1st Row


D3 = 2[(5)( – 11) – ( – 15)( – 1)] – ( – 3)[( – 11)( – 2) – ( – 15)(3)] + 29[( – 2)( – 1) – (3)(5)]


D3 = 2[ – 55 – 15] + 3(22 + 45) + 29(2 – 15)


D3 = 2[ – 70] + 3[67] + 29[ – 13]


D3 = – 140 + 201 – 377


D3 = – 316


Thus by Cramer’s Rule, we have




x = 2


again,




y = – 3


and,




z = – 4


17