Find the angle to intersection of the following curves :

2y2 = x3 and y2 = 32x

Given:


Curves 2y2 = x3 ...(1)


& y2 = 32x ...(2)


First curve is 2y2 = x3


Differentiating above w.r.t x,


4y. = 3x2


m1 ...(3)


Second curve is y2 = 32x


2y. = 32


y. = 16


m2 ...(4)


Substituting (2) in (1),we get


2y2 = x3


2(32x) = x3


64x = x3


x3 64x = 0


x(x2 – 64) = 0


x = 0 & (x2 – 64) = 0


x = 0 & ±8


Substituting x = 0 & x = ±8 in (1) in (2),


y2 = 32x


when x = 0,y = 0


when x = 8


y2 = 32×8


y2 = 256


y = ±16


Substituting above values for m1 & m2,we get,


when x = 0,y = 16


m1


0


when x = 8,y = 16


m1


3


Values of m1 is 0 & 3


when x = 0,y = 0,


m2



when y = 16,


m2


1


Values of m2 is ∞ & 1


when m1 = 0 & m2 = ∞


tanθ


tanθ


tanθ = ∞


θ = tan – 1(∞)


tan – 1(∞)


θ


when m1 & m2 = 2



tanθ


tanθ


tanθ


θ = tan – 1()


θ25.516


1