Find the angle to intersection of the following curves :
2y2 = x3 and y2 = 32x
Given:
Curves 2y2 = x3 ...(1)
& y2 = 32x ...(2)
First curve is 2y2 = x3
Differentiating above w.r.t x,
⇒ 4y. = 3x2
⇒ m1 ...(3)
Second curve is y2 = 32x
⇒ 2y. = 32
⇒ y. = 16
⇒ m2 ...(4)
Substituting (2) in (1),we get
⇒ 2y2 = x3
⇒ 2(32x) = x3
⇒ 64x = x3
⇒ x3 – 64x = 0
⇒ x(x2 – 64) = 0
⇒ x = 0 & (x2 – 64) = 0
⇒ x = 0 & ±8
Substituting x = 0 & x = ±8 in (1) in (2),
y2 = 32x
when x = 0,y = 0
when x = 8
⇒ y2 = 32×8
⇒ y2 = 256
⇒ y = ±16
Substituting above values for m1 & m2,we get,
when x = 0,y = 16
m1
⇒ 0
when x = 8,y = 16
m1
⇒ 3
Values of m1 is 0 & 3
when x = 0,y = 0,
m2
⇒ ∞
when y = 16,
m2
⇒ 1
Values of m2 is ∞ & 1
when m1 = 0 & m2 = ∞
⇒ tanθ
⇒ tanθ
⇒ tanθ = ∞
⇒ θ = tan – 1(∞)
∴ tan – 1(∞)
⇒ θ
when m1 & m2 = 2
⇒ tanθ
⇒ tanθ
⇒ tanθ
⇒ θ = tan – 1()
⇒ θ≅25.516